Monday, June 25th, 2018

Generation of typical solar radiation data for different climates of China

Publication year: 2011brbSource:/b Energy, Available online 30 December 2011brHaixiang Zang, Qingshan Xu, Haihong BianbrIn this study, typical solar radiation data are generated from both measured data and synthetic generation for 35 stations in six different climatic zones of China. (1) By applying the measured weather data during at least 10 years from 1994 to 2009, typical meteorological years (TMYs) for 35 cities are generated using the Finkelstein–Schafer statistical method. The cumulative distribution function (CDF) of daily global solar radiation (DGSR) for each year is compared with the CDF of DGSR for the long-term years in six different climatic stations (Sanya, Shanghai, Zhengzhou, Harbin, Mohe and Lhasa). The daily global solar radiation as typical data obtained from the TMYs are presented in the Table. (2) Based on the recorded global radiation data from at least 10 years, a new daily global solar radiation model is developed with a sine and cosine wave (SCW) equation. The results of the proposed model and other empirical regression models are compared with measured data using different statistical indicators. It is found that solar radiation data, calculated by the new model, are superior to these from other empirical models at six typical climatic zones. In addition, the novel SCW model is tested and applied for 35 stations in China.brh3 class=h3Highlights/h3► Both TMY method and synthetic generation are used to generate solar radiation data. ► The latest and accurate long term weather data in six different climates are applied. ► TMYs using new weighting factors of 8 weather indices for 35 regions are obtained. ► A new sine and cosine wave model is proposed and utilized for 35 major stations. ► Both TMY method and the proposed regression model perform well on monthly bases.

Speak Your Mind

Questions or comments? We'd love to hear from you!